行程问题
行程问题是研究物体在一定的条件、环境、范围内运动的问题,这类问题主要涉及到路程、速度、时间三个量之间的关系。较复杂的行程问题还要 注意理解“速度和”、“速度差”以及行程中两车的出发时间、出发地点、运动方向与运动结果等四大要素,行程问题根据运动方向的不同可分为三类:一、 相遇问题
两个物体由于相向运动而相遇,这就是相遇问题。解答相遇问题的关键是求出两个运动物体的速度之和,其基本公式有:
相遇时间=两地路程÷速度和
速度和=两地路程÷相遇时间
两地路程=速度和×相遇时间
二、相离问题
两个运动物体由于背向运动而相离,就是相离问题。解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
基本公式有:
两地距离=速度和×相离时间
相离时间=两地距离÷速度和
速度和=两地距离÷相离时间
三、追及问题
两个运动的物体同向而行,一快一慢,快车后,慢车前,经过一定的时间,快的追上慢的就是追及问题。根据所给的条件不同,可分两种:
(1)直接给追及距离的(同时不同地的);
(2)间接给追及距离的(同地不同时)。
解答追及问题的关键是确定或求出追及距离和速度差,基本公式有:
追及时间=追及距离÷速度差
追及距离=速度差×追及时间
速度差=追及距离÷追及时间
1.一条街上,一个骑车人和一个步行人同向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?
A.6 B8 C 10 D12
2.一艘轮船从河的上游甲港顺流到达下游的丙港,然后调头逆流向上到达中游的乙港,共用了12小时。已知这条轮船的顺流速度是逆流速度的2倍,水流速度是每小时2千米,从甲港到乙港相距18千米。则甲、丙两港间的距离为( )
A.44千米B.48千米C.30千米D.36千米
3.甲、乙两人分别从A、B两地同时相向而行,甲的速度是乙的1.5倍,二人相遇后继续行进,甲到B地、乙到A地后立即返回。已知两人第四次相遇的地点距离第三次相遇的地点20千米,那么A/B相距多少千米?
A.30 B.25 C.35 D.40
4. 甲、乙两人同时从两地出发,相向而行,距离是100千米。甲每小时行6千米,乙每小时行4千米。甲带着一只狗,狗每小时行10千米。这只狗同甲一起出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。这只狗一共跑了多少千米?
5.甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?
解析:1.答案是B
解析:设步行速度为V步,自行车速度则为3V步,设公共车速为X则
每个隔10 分钟有一辆公交车超过一个行人:(X-V步)×10=S。。。。1
每个隔 20分钟有一辆公交车超过一个骑车人:(X-3V步)×20=S。。。。 2
1,2联立得X=5V步,也就是说车单位时间走得路程为人得5倍,那么就是说车走10×4V步才追上人,于是
发车时间为10×4V步/5V步=8
2. 答案是.A。
解析:顺流速度-逆流速度=2×水流速度,又顺流速度=2×逆流速度,可知顺流速度=4×水流速度=8千米/时,逆流速度=2×水流速度=4千米/时。设甲、丙两港间距离为X千米,可列方程X÷8+(X-18)÷4=12解得X=44。
3.答案是B
第三个相遇的时候共行使了5个AB的距离,甲行使了3AB的距离,乙行使了2AB的距离,说明第三次是在一端相遇的。
第四次相遇的时候共行使了7个AB的距离,甲行使了3.2AB的距离,乙行使了2.8AB的距离。说明第四次相遇的地点距端点的比为0.8:0.2
则有0.8AB的距离等于20千米
所以AB的距离为25千米
4.解 分步解答
(1)甲、乙两人多少小时相遇?
100÷(6+4)=10(时)
(2)狗跑的总路程是多少千米?
10×10=100(千米)
5.轮船逆流航行的时间:(35+5)÷2=20(小时),
顺流航行的时间:(35—5)÷2=15(小时),
轮船逆流速度:360÷20=18(千米/小时),
顺流速度:360÷15=24(千米/小时),
水速:(24—18)÷2=3(千米/小时),
帆船的顺流速度:12+3=15(千米/小时),
帆船的逆水速度:12—3=9(千米/小时),
帆船往返两港所用时间:
360÷15+360÷9=24+40=64(小时)。